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MHR Design Features Are Well Suited for Significant 
Expansion of Nuclear Energy 

• Passive Safety
– No active safety systems 

required
– No evacuation plans required 

• Competitive Economics
• High Thermal Efficiency
• Siting Flexibility

– Lower waste heat 
rejection, reduced water 
cooling requirements

• High-Temperature Capability 
with Flexible Energy Outputs
– Electricity
– Hydrogen
– Synfuels, etc.

• Flexible Fuel Cycles
– LEU, HEU, Pu, TRU, Thorium
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One Reactor Design Can Use Multiple Fuels for Multiple 
Applications
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The MHR is a Passively Safe Design

Passive Safety Features
• Ceramic, coated-particle 

fuel
– Maintains integrity during 

loss-of-coolant accident
• Annular graphite core with 

high heat capacity
– Helps to limit temperature 

rise during loss-of-coolant 
accident

• Low power density
– Helps to maintain 

acceptable temperatures 
during normal operation 
and accidents

• Inert Helium Coolant
– Reduces circulating and 

plateout activity 

Passive Air-
Cooled RCCS
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Hydrogen Plant Will Not Impact Passive 
Safety

• Potential Licensing issue is co-
location of MHR and 
Hydrogen Plant
– Passive safety of MHR allows 

co-location
– Earthen berm provides 

defense-in-depth
• Other reactors located in 

close proximity to hazardous 
chemical plants and 
transportation routes
– NRC allows risk-based 

approach
– INL recommends 60 to 100 m 

separation distance
– JAEA studies also support 

close separation distance
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The GT-MHR Produces Electricity Economically with 
High Efficiency

• MHR coupled to a direct-
cycle Brayton power-
conversion system

• 600 MW(t), 102 column, 
annular core, prismatic 
blocks

• 48% thermal efficiency 
with 850°C Outlet 
Temperature

• Installed capital costs of 
approximately 
$1000/kW(e)

• Busbar electricity 
generation costs of 
approximately 3.1 cents 
per kW(e)-h.
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H2-MHR Can Produce Hydrogen with High Efficiency

MHR Coupled to Thermochemical 
Water Splitting (Sulfur-Iodine 
Process)

MHR Coupled to High-
Temperature Electrolysis
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SI-Based H2-MHR Uses IHX to Interface MHR with 
Hydrogen Production System
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Product H2 Pressure:  4 MPa

IHX Design 
Concept Using 
Heatric Modules 
Height ~30 m 
Diameter ~6 m



大洗 2007年 4月 日16-19 Slide 9

HTE-Based H2-MHR Generates Both Electricity and High-
Temperature Steam to Drive Solid-Oxide Electrolyzer Modules

Annual H2 Production (4-module plant):  2.68 x 105 metric tons

Hydrogen Production Efficiency:  55.8% (based on HHV of H2)

Product H2 Pressure:  4.95 MPa
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大洗 2007年 4月 日16-19 Slide 10

Nth-of-a-Kind Hydrogen Production Costs are Approximately 
$2/kg for both SI-Based and HTE-Based Plants

 
Total Hydrogen Production Cost = $1.97/kg

MHR Plant Capital Charges (24.9%) SI Plant Capital Charges (18.6%)
MHR Plant O&M Costs (5.2%) SI Plant O&M Costs (10.6%)
Nuclear Fuel Costs (9.8%) Electricity Costs (30.9%)

Total Hydrogen Production Cost = $1.92/kg

MHR Plant Capital Charges (34.8%) HTE Plant Capital Charges (28.3%)
MHR Plant O&M Costs (7.3%) HTE Plant O&M Costs (15.8%)
Nuclear Fuel Costs (13.8%)

SI-Based Plant HTE-Based Plant

Electricity costs result mostly from 
pumping process fluids in the 
hydrogen plant (not from pumping 
helium).  Efforts are being made to 
optimize the flow sheets to reduce 
pumping requirements.

SOE module unit costs assumed to be 
$500/kW(e).  If module unit costs are 
increased to $1000/kW(e), hydrogen 
production cost increased to 
$2.52/kg.
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Nuclear Hydrogen Production Costs Compare 
Favorably with Steam-Methane Reforming
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Economic comparisons are especially favorable if carbon 
dioxide penalties and oxygen credits are taken into account.
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VHTR Can Provide a Wide Variety of Energy Outputs
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GT-MHRs and H2-MHRs Can Be Deployed with Advanced Fuel 
Cycles to Address Spent Fuel Management and Sustainability Issues
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MHRs Can Be Deployed Using a Self-Cleaning Fuel 
Cycle to Relieve Repository Burdens
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Waste accumulation: 
35 kgTRU /GWe-yr
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present LWRs

E
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Sustainability:  200 – 300 years in U.S.
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FBR/VHTR System Deployment Provides Sustainability, 
Proliferation Resistance, and Energy Flexibility
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Long-term sustainability for resource-deficient countries (e.g., Japan)

JAEA/GA jointly investigating FBR/VHTR deployment scenarios in Japan.
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Conclusions

• MHR design features make it an outstanding choice 
for future deployment of nuclear energy
– Passive safety
– High-temperature capability
– High thermal efficiency, flexible siting
– Flexible fuel cycles and energy outputs

• MHR deployment supports significant, sustainable 
expansion of nuclear energy
– Better utilization of repository space with greatly 

reduced requirements for recycle of nuclear fuel
– Deployment in symbiosis with FBRs can provide virtually 

unlimited sustainability
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